Werner Heisenberg

5 Dec 1901
1 Feb 1976
General
Offer Flowers
Light a Candle
Pray for the soul
Seek Blessings

Werner Karl Heisenberg ( 5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the key pioneers of quantum mechanics. He published his work in 1925 in a breakthrough paper.

In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, this matrix formulation of quantum mechanics was substantially elaborated.

In 1927 he published his uncertainty principle, upon which he built his philosophy and for which he is best known. Heisenberg was awarded the Nobel Prize in Physics for 1932 “for the creation of quantum mechanics”.

He also made important contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles, and he was instrumental in planning the first West German nuclear reactor at Karlsruhe, together with a research reactor in Munich, in 1957. Considerable controversy surrounds his work on atomic research during World War II.

Following World War II, he was appointed director of the Kaiser Wilhelm Institute for Physics, which soon thereafter was renamed the Max Planck Institute for Physics. He was director of the institute until it was moved to Munich in 1958, when it was expanded and renamed the Max Planck Institute for Physics and Astrophysics.

Heisenberg was also president of the German Research Council, chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.

Werner Karl Heisenberg was born in Würzburg, Germany, to Kaspar Earnesta August Heisenberg, a secondary school teacher of classical languages who became Germany’s only ordentlicher Professor (ordinarius professor) of medieval and modern Greek studies in the university system, and his wife, Annie Wecklein.

He studied physics and mathematics from 1920 to 1923 at the Ludwig-Maximilians-Universität München and the Georg-August-Universität Göttingen. At Munich, he studied under Arnold Sommerfeld and Wilhelm Wien. At Göttingen, he studied physics with Max Born and James Franck, and he studied mathematics with David Hilbert. He received his doctorate in 1923, at Munich under Sommerfeld. He completed his Habilitation in 1924, at Göttingen under Born.

Because Sommerfeld had a sincere interest in his students and knew of Heisenberg’s interest in Niels Bohr’s theories on atomic physics, Sommerfeld took Heisenberg to Göttingen to the Bohr-Festspiele (Bohr Festival) in June 1922. At the event, Bohr was a guest lecturer and gave a series of comprehensive lectures on quantum atomic physics. There, Heisenberg met Bohr for the first time, and it had a significant and continuing effect on him.

Heisenberg’s doctoral thesis, the topic of which was suggested by Sommerfeld, was on turbulence; the thesis discussed both the stability of laminar flow and the nature of turbulent flow. The problem of stability was investigated by the use of the Orr–Sommerfeld equation, a fourth order linear differential equation for small disturbances from laminar flow. He briefly returned to this topic after World War II.

Heisenberg’s paper on the anomalous Zeeman effect was accepted as his Habilitationsschrift (Habilitation thesis) under Max Born at Göttingen.

In his youth he was a member and Scoutleader of the Neupfadfinder, a German Scout association and part of the German Youth Movement. In August 1923 Robert Honsell and Heisenberg organized a trip (Großfahrt) to Finland with a Scout group of this association from Munich.

Heisenberg arrived to Munich in 1919 as a member of Freikorps to fight the Bavarian Soviet Republic established a year earlier. Five decades later he recalled those days as youthful fun, like “playing cops and robbers and so on; it was nothing serious at all.”

From 1924 to 1927, Heisenberg was a Privatdozent at Göttingen. From 17 September 1924 to 1 May 1925, under an International Education Board Rockefeller Foundation fellowship, Heisenberg went to do research with Niels Bohr, director of the Institute of Theoretical Physics at the University of Copenhagen. His seminal paper, Über quantentheoretischer Umdeutung was published in September 1925.

He returned to Göttingen and with Max Born and Pascual Jordan, over a period of about six months, developed the matrix mechanics formulation of quantum mechanics. On 1 May 1926, Heisenberg began his appointment as a university lecturer and assistant to Bohr in Copenhagen. It was in Copenhagen, in 1927, that Heisenberg developed his uncertainty principle, while working on the mathematical foundations of quantum mechanics.

On 23 February, Heisenberg wrote a letter to fellow physicist Wolfgang Pauli, in which he first described his new principle. In his paper on the uncertainty principle, Heisenberg used the word “Ungenauigkeit” (imprecision).

In 1927, Heisenberg was appointed ordentlicher Professor (ordinarius professor) of theoretical physics and head of the department of physics at the Universität Leipzig; he gave his inaugural lecture on 1 February 1928. In his first paper published from Leipzig, Heisenberg used the Pauli exclusion principle to solve the mystery of ferromagnetism.

In Heisenberg’s tenure at Leipzig, the quality of doctoral students, post-graduate and research associates who studied and worked with Heisenberg there is attested to by the acclaim later earned by these people; at various times, they included: Erich Bagge, Felix Bloch, Ugo Fano, Siegfried Flügge, William Vermillion Houston, Friedrich Hund, Robert S. Mulliken, Rudolf Peierls, George Placzek, Isidor Isaac Rabi, Fritz Sauter, John C. Slater, Edward Teller, John Hasbrouck van Vleck, Victor Frederick Weisskopf, Carl Friedrich von Weizsäcker, Gregor Wentzel and Clarence Zener.

In early 1929, Heisenberg and Pauli submitted the first of two papers laying the foundation for relativistic quantum field theory. Also in 1929, Heisenberg went on a lecture tour in China, Japan, India, and the United States.

Shortly after the discovery of the neutron by James Chadwick in 1932, Heisenberg submitted the first of three papers on his neutron-proton model of the nucleus. He was awarded the 1932 Nobel Prize in Physics.

In 1928, the British mathematical physicist P. A. M. Dirac had derived the relativistic wave equation of quantum mechanics, which implied the existence of positive electrons, later to be named positrons. In 1932, from a cloud chamber photograph of cosmic rays, the American physicist Carl David Anderson identified a track as having been made by a positron.

In mid-1933, Heisenberg presented his theory of the positron. His thinking on Dirac’s theory and further development of the theory were set forth in two papers. The first, Bemerkungen zur Diracschen Theorie des Positrons (Remarks on Dirac’s theory of the positron) was published in 1934, and the second, Folgerungen aus der Diracschen Theorie des Positrons (Consequences of Dirac’s Theory of the Positron), was published in 1936.

In these papers Heisenberg was the first to reinterpret the Dirac equation as a “classical” field equation for any point particle of spin ħ/2, itself subject to quantization conditions involving anti-commutators. Thus reinterpreting it as a (quantum) field equation accurately describing electrons, Heisenberg put matter on the same footing as electromagnetism: as being described by relativistic quantum field equations which allowed the possibility of particle creation and destruction. (Hermann Weyl had already described this in a 1929 letter to Einstein.)

In the early 1930s in Germany, the Deutsche Physik movement was anti-Semitic and anti-theoretical physics, especially including quantum mechanics and the theory of relativity. As applied in the university environment, political factors took priority over the historically applied concept of scholarly ability,even though its two most prominent supporters were the Nobel Laureates in Physics Philipp Lenard and Johannes Stark.

After Adolf Hitler came to power in 1933, Heisenberg was attacked in the press as a “White Jew” by elements of the Deutsche Physik (German Physics) movement for his insistence on teaching about the roles of Jewish scientists. As a result, he came under investigation by the SS. This was over an attempt to appoint Heisenberg as successor to Arnold Sommerfeld at the University of Munich.

The issue was resolved in 1938 by Heinrich Himmler, head of the SS. While Heisenberg was not chosen as Sommerfeld’s successor, he was rehabilitated to the physics community during the Third Reich.

Nevertheless, supporters of Deutsche Physik launched vicious attacks against leading theoretical physicists, including Arnold Sommerfeld and Heisenberg. On 29 June 1936, a National Socialist Party newspaper published a column attacking Heisenberg. On 15 July 1937, he was attacked in a journal of the SS. This was the beginning of what is called the Heisenberg Affair.

In mid-1936, Heisenberg presented his theory of cosmic-ray showers in two papers. Four more papers appeared in the next two years.

In June 1939, Heisenberg bought a summer home for his family in Urfeld am Walchensee, in southern Germany. He also traveled to the United States in June and July, visiting Samuel Abraham Goudsmit, at the University of Michigan in Ann Arbor. However, Heisenberg refused an invitation to emigrate to the United States.

He did not see Goudsmit again until six years later, when Goudsmit was the chief scientific advisor to the American Operation Alsos at the close of World War II. Ironically, Heisenberg was arrested under Operation Alsos and detained in England under Operation Epsilon.

In January 1937 Heisenberg met Elisabeth Schumacher (1914-1998) at a private music recital. Elisabeth was the daughter of a well-known Berlin economics professor, and her brother was the economist E. F. Schumacher, author of Small is Beautiful.

Heisenberg married her on 29 April. Fraternal twins Maria and Wolfgang were born in January 1938, whereupon Wolfgang Pauli congratulated Heisenberg on his “pair creation” – a word play on a process from elementary particle physics, pair production.

They had five more children over the next 12 years: Barbara, Christine, Jochen, Martin and Verena. Jochen became a physics professor at the University of New Hampshire.

Heisenberg enjoyed classical music and was an accomplished pianist.

Heisenberg was raised and lived as a Lutheran Christian, publishing and giving several talks reconciling science with his faith.

In his speech Scientific and Religious Truth (1974) while accepting the Romano Guardini Prize, Heisenberg affirmed:

“In the history of science, ever since the famous trial of Galileo, it has repeatedly been claimed that scientific truth cannot be reconciled with the religious interpretation of the world. Although I am now convinced that scientific truth is unassailable in its own field, I have never found it possible to dismiss the content of religious thinking as simply part of an outmoded phase in the consciousness of mankind, a part we shall have to give up from now on.

Thus in the course of my life I have repeatedly been compelled to ponder on the relationship of these two regions of thought, for I have never been able to doubt the reality of that to which they point.” (Heisenberg 1974, 213)

“Where no guiding ideals are left to point the way, the scale of values disappears and with it the meaning of our deeds and sufferings, and at the end can lie only negation and despair. Religion is therefore the foundation of ethics, and ethics the presupposition of life.” (Heisenberg 1974, 219).

In his autobiographical article in the journal Truth, Henry Margenau (Professor Emeritus of Physics and Natural Philosophy at Yale University) pointed out: “I have said nothing about the years between 1936 and 1950. There were, however, a few experiences I cannot forget.

One was my first meeting with Heisenberg, who came to America soon after the end of the Second World War. Our conversation was intimate and he impressed me by his deep religious conviction. He was a true Christian in every sense of that word.”

Heisenberg also enjoyed mountaineering. In his autobiography, he included photographs from this activity.

Heisenberg died of cancer of the kidneys and gall bladder at his home, on 1 February 1976. The next evening, his colleagues and friends walked in remembrance from the Institute of Physics to his home and each put a candle near the front door. He is buried at Munich Waldfriedhof.

No tribute yet, be the first to leave one!

You must be logged in to post a tribute.